These problems will result in a system of differential equations.

Differential Equations Class Notes

Introduction to Systems: Interconnected Fluid Tanks (Section 5.1)

Think back to our problems involving a single closed tank with brine circulating within. We will now add a second tank that is interconnected to the first. Here is a picture.

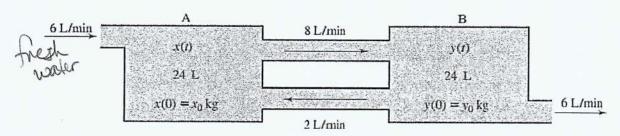


Figure 5.1 Interconnected fluid tanks

What we see here are two tanks, each with volume 24 liters (L). Tank A has x(t) kilograms (kg) of salt dissolved in the water at time t minutes; Tank B has y(t) kilograms (kg) of salt dissolved in the water at time t minutes. We will take t to be greater than zero. Fresh water enters tank A at the rate of 6 liters per minute on the left; briny water leaves tank B at the rate of 6 liters per minute on the right.

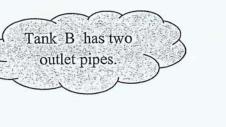
The tanks are interconnected. Briny water flows from tank A to tank B at a rate of 8 liters per minute; Briny water flows from tank B to tank A at a rate of 2 liters per minute. The liquids are kept well stirred so we assume they are homogeneous.

The initial amounts (kg) of salt in tanks A and B are, respectively, $x(0) = x_0$ and $y(0) = y_0$. Since the system is being flushed with fresh water, it is true that as $t \to \infty$, both x and y diminish to zero.

Let's examine the flows and concentrations of salt more closely. As we have seen in a previous section, the salt concentration (kg/L) in tank A is $\frac{x(t) kg}{24 L}$. The upper pipe carries salt out of $\frac{8 L}{1 \min} \cdot \frac{x kg}{24 L} = \frac{x kg}{3 \min}$. Similarly, the salt concentration (kg/L) in tank B is $\frac{y(t) kg}{24 L}$. The lower pipe carries salt into tank A at a rate of $\frac{2 L}{1 \min} \cdot \frac{y kg}{24 L} = \frac{y kg}{12 \min}$.

This gives us $\frac{dx}{dt} = input \ rate - output \ rate = \frac{y}{12} - \frac{x}{3}$. Similarly, for tank B, we have $\frac{dy}{dt}$ = input rate – output rate $=\frac{x}{3}-\left(\frac{2y}{24}+\frac{6y}{24}\right)$

 $=\frac{x}{3}-\frac{y}{3}$



Look at that! We have a system of equations.

$$x' = -\frac{1}{3}x + \frac{1}{12}y$$

$$y' = \frac{1}{3}x - \frac{1}{3}y$$

$$y' = \frac{1}{3}x - \frac{1}{3}y$$

$$3y' = x - y$$

$$3y' + y = x$$

$$3y' + y = x$$

Solve the second equation for x and substitute it into the first equation. The

$$x' = -\frac{1}{3}x + \frac{1}{12}y$$

$$(3y'+y)' = -\frac{1}{3}(3y'+y) + \frac{1}{12}y$$

$$3y'' + y' = -y' - \frac{1}{4}y$$

$$3y'' + 2y' + \frac{1}{4}y = 0$$
 \circ

This is a second-order, linear diff. eq. with constant coefficients

As we have seen before, this can be solved by solving its auxiliary equation, $3r^2 + 2r + \frac{1}{4} = 0$.

We get $r = -\frac{1}{2}, -\frac{1}{6}$. That gives us a general solution of $y(t) = c_1 e^{-\frac{t}{2}} + c_2 e^{-\frac{t}{6}}$ where c_1 and c_2 are real numbers. Complete the process to find c_1 and c_2 .

$$y = c_1 e^{-t/2} + c_2 e^{-t/6}$$

$$y' = -\frac{1}{2} c_1 e^{-t/2} - \frac{1}{6} c_2 e^{-t/6}$$

Here, find y' and then x given that

$$X = 3y' + y$$

$$= -\frac{3}{2}c_{1}e^{-t/2} - \frac{1}{2}c_{2}e^{-t/6} + c_{1}e^{-t/2} + c_{2}e^{-t/6}$$

$$= X = -\frac{1}{2}c_{1}e^{-t/2} + \frac{1}{2}c_{2}e^{-t/6}$$

To finish this out, solve for c_1 and c_2 by recalling $x(0) = x_0$ and $y(0) = y_0$. This yields a system of equations involving c_1 and c_2 . This process will be generalized in the next section to find solutions of all linear systems with constant coefficients.

find solutions of all linear systems with constant coefficients.

$$y = C_1 e^{-t/2} + C_2 e^{-t/6}$$

$$x = -\frac{1}{2} C_1 e^{-t/2} + \frac{1}{2} C_2 e^{-t/6}$$

$$x = -\frac{1}{2} C_1 e^{-t/2} + \frac{1}{2} C_2 e^{-t/6}$$

$$x(0) = x_0 : \quad x_0 = -\frac{1}{2} C_1 e^{-t/2} + \frac{1}{2} C_2 e^{-t/6}$$

$$x(0) = x_0 : \quad x_0 = -\frac{1}{2} C_1 e^{-t/2} + \frac{1}{2} C_2 e^{-t/6}$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y(0) = y_0 : \quad y_0 = C_1 + C_2$$

$$y_0 = C_1 + C_2$$

 $y_0 = C_1 + X_0 + \frac{1}{2}y_0$

Soln:
$$y = (\frac{1}{2}y_0 - \chi_0)e^{-t/2} + (\chi_0 + \frac{1}{2}y_0)e^{-t/6}$$

 $\chi = -\frac{1}{2}(\frac{1}{2}y_0 - \chi_0)e^{-t/2} + \frac{1}{2}(\chi_0 + \frac{1}{2}y_0)e^{-t/6}$